Filtering variational quantum algorithms for combinatorial optimization

Current gate-based quantum computers have the potential to provide a computational advantage if algorithms use quantum hardware efficiently. To make combinatorial optimization more efficient, we introduce the Filtering Variational Quantum Eigensolver (F-VQE) which utilizes filtering operators to achieve faster and more reliable convergence to the optimal solution. Additionally we explore the use of causal cones to reduce the number of qubits required on a quantum computer. Using random weighted MaxCut problems, we numerically analyze our methods and show that they perform better than the original VQE algorithm and the Quantum Approximate Optimization Algorithm (QAOA). We also demonstrate the experimental feasibility of our algorithms on a Honeywell trapped-ion quantum processor.

David Amaro, Carlo Modica, Matthias Rosenkranz, Mattia Fiorentini, Marcello Benedetti, and Michael Lubasch
Post by admin