On the ArXiv: Modeling Carbon Capture with Quantum Computing

March 29, 2022
Figure 1. A quantum computing methodology applied to CO2 capture on Metal-Organic Frameworks.

Quantinuum's quantum chemistry team, in collaboration with TotalEnergies, has presented a new preprint paper detailing a potential use of quantum computers in mitigating climate change. The team has paved the way for the use of quantum computing to model materials, as a part of the materials discovery process, for use in carbon capture and sequestration.

In this work, the research team brought together the worlds of carbon capture and quantum computing. They developed a quantum computing methodology describing the binding of molecular carbon dioxide with a material being actively researched for carbon capture, called a Metal-Organic Framework, or MOF. This family of materials is of great scientific interest because they are capable of absorbing carbon dioxide with low energy requirements.

These synthetic materials are porous, which gives them their ability to bind to carbon dioxide molecules. MOFs can be compared to "molecular LEGO", as they can take many different configurations, which result in specific pore sizes and reactivity. They can in principle be used to design materials with specific properties.

Using classical computers to model these systems often yields imprecise solutions. Using a novel quantum method, the team opens a door to potentially overcoming some of the limitations of classical approaches. Due to the natural way in which many-body interactions can be treated, as well as the sheer size of the computational space, quantum computing is a natural future alternative for modeling such systems.

Today’s quantum computers (noisy, intermediate-scale quantum machines, or NISQ machines) are constrained by the number of qubits available for computation, and the tendency for calculations to be overwhelmed by errors. Modeling complex materials like MOFs is therefore challenging. The breakthrough represented by this paper is the use of fragmentation strategies to break down the computational task, providing a robust and versatile approach that combines quantum and classical computing methods.

The work revealed the way today’s quantum computers modeling complex many-body interactions can increase our understanding of MOF-CO2 systems. It potentially accelerates our ability to use quantum computers to solve challenges that could play an important role in tackling climate change.

Ilyas Khan, CEO of Quantinuum, commented: "The publication of this paper in partnership with TotalEnergies, one of the world's leading developers of carbon capture and storage technologies, marks an important milestone in the much anticipated area of quantum chemistry. The mixed team of TotalEnergies and Quantinuum scientists has demonstrated a way to use today's quantum computers to conduct materials science research in a space that the Intergovernmental Panel on Climate Change says will play a vital role in stabilizing atmospheric greenhouse gas concentrations. This is the sort of work quantum computers have the potential to accelerate in the future."

View the Paper

arrow
Kaniah Konkoly-Thege

Kaniah is Chief Legal Counsel and SVP of Government Relations for Quantinuum. In her previous role, she served as General Counsel, Honeywell Quantum Solutions. Prior to Honeywell, she was General Counsel, Honeywell Federal Manufacturing and Technologies, LLC, and Senior Attorney, U.S. Department of Energy. She was Lead Counsel before the Civilian Board of Contract Appeals, the Merit Systems Protection Board, and the Equal Employment Opportunity Commission. Kaniah holds a J.D. from American University, Washington College of Law and B.A., International Relations and Spanish from the College of William and Mary.

Jeff Miller

Jeff Miller is Chief Information Officer for Quantinuum. In his previous role, he served as CIO for Honeywell Quantum Solutions and led a cross-functional team responsible for Information Technology, Cybersecurity, and Physical Security. For Honeywell, Jeff has held numerous management and executive roles in Information Technology, Security, Integrated Supply Chain and Program Management. Jeff holds a B.S., Computer Science, University of Arizona. He is a veteran of the U.S. Navy, attaining the rank of Commander.

Matthew Bohne

Matthew Bohne is the Vice President & Chief Product Security Officer for Honeywell Corporation. He is a passionate cybersecurity leader and executive with a proven track record of building and leading cybersecurity organizations securing energy, industrial, buildings, nuclear, pharmaceutical, and consumer sectors. He is a sought-after expert with deep experience in DevSecOps, critical infrastructure, software engineering, secure SDLC, supply chain security, privacy, and risk management.

Todd Moore

Todd Moore is the Global Vice President of Data Encryption Products at Thales. He is responsible for setting the business line and go to market strategies for an industry leading cybersecurity business. He routinely helps enterprises build solutions for a wide range of complex data security problems and use cases. Todd holds several management and technical degrees from the University of Virginia, Rochester Institute of Technology, Cornell University and Ithaca College. He is active in his community, loves to travel and spends much of his free time supporting his family in pursuing their various passions.

John Davis

Retired U.S. Army Major General John Davis is the Vice President, Public Sector for Palo Alto Networks, where he is responsible for expanding cybersecurity initiatives and global policy for the international public sector and assisting governments around the world to prevent successful cyber breaches. Prior to joining Palo Alto Networks, John served as the Senior Military Advisor for Cyber to the Under Secretary of Defense for Policy and served as the Acting Deputy Assistant Secretary of Defense for Cyber Policy.  Prior to this assignment, he served in multiple leadership positions in special operations, cyber, and information operations.