Cambridge Quantum and Deutsche Bahn Netz AG Partner

Cambridge Quantum and Deutsche Bahn Netz AG Partner

Leveraging Latest Quantum Algorithms to Optimise Train Scheduling

Cambridge Quantum and Deutsche Bahn Netz AG (DB) announce today a partnership to explore how quantum computers can improve the rescheduling of rail traffic as part of DB’s long-term transformative plan, Digitale Schiene Deutschland, to digitise DB’s infrastructure and railway system using next-generation technologies to achieve a higher capacity and optimal utilisation of the rail network.

Combining Cambridge Quantum’s latest combinatorial optimisation algorithm Filtering Variational Quantum Eigensolver (F-VQE), recently shown to outperform leading quantum algorithms, with DB’s operations research expertise, the team re-optimised realistic train timetables after simulated delays and are now identifying areas for continued study. This collaboration evidences how innovations in both quantum algorithms and domain-specific modelling can inform a long-term vision for a faster and greener transportation network.

Ilyas Khan, CEO of Cambridge Quantum, said, “We are very excited to be working with Deutsche Bahn to explore and demonstrate the utility of today’s Noisy Intermediate Scale Quantum (NISQ) processors to solve real-world problems in the transport and logistics sector. Deutsche Bahn’s research and development efforts in this area are of critical importance, and we are confident that over time as quantum computers start to scale, our work with the Deutsche Bahn will lead to a meaningful contribution towards a cleaner and greener future.”

Michael Küpper, lead of Capacity and Traffic Management System at Digitale Schiene Deutschland, said, “The collaboration with Cambridge Quantum is a perfect example of how Deutsche Bahn is working as a partner with industry providers and combining our relative expertise towards a goal neither side can achieve alone. By working with Cambridge Quantum, we have fine-tuned our research and development plans and taken the first steps in defining a future quantum-advantaged train timetabling system. We are excited to continue working with Cambridge Quantum to address some of the key challenges and contribute to the rapidly evolving field of NISQ quantum algorithm research.”

 

ABOUT DEUTSCHE BAHN

As a subsidiary of Deutsche Bahn AG, DB Netz AG is responsible for the rail infrastructure.
DB Netz AG is the service provider for currently 420 railway undertakings (RUs) utilising a route network comprising nearly 33,300 km. The German railway network is the longest in all of Europe. DB Netz AG ensures non-discriminatory access to its infrastructure. The performance of non-DB-Group railways in the network has greatly increased over the years. DB Netz is responsible for the operation of an efficient railway infrastructure (long-distance and conurbation networks, regional networks, train-formation and treatment facilities).

Digitale Schiene Deutschland is a sector initiative of DB AG, the German Federal Ministry of Transport and Digital Infrastructure (BMVI) and further relevant transport associations for the fundamental modernisation and digitalisation of railway infrastructure through the consistent introduction of digital control and safety technology. In addition, Digitale Schiene Deutschland is working on a far-reaching digitalisation of the railway system. For this, a system architecture will detail the tasks of individual components of the railway system, and how they should work together.

 

ABOUT CAMBRIDGE QUANTUM

Founded in 2014 and backed by some of the world’s leading quantum computing companies, Cambridge Quantum is a global leader in quantum software and quantum algorithms, enabling clients to achieve the most out of rapidly evolving quantum computing hardware. Cambridge Quantum has offices in Europe, USA, and Japan. On 8th June 2021, Cambridge Quantum announced a merger with Honeywell Quantum Solutions which is expected to close in Q4 2021. Access the source code for lambeq, TKET, Python bindings and utilities on GitHub.

 

Cambridge Quantum and Honeywell Combine

Cambridge Quantum and Deutsche Bahn Netz AG Partner

Leveraging Latest Quantum Algorithms to Optimise Train Scheduling

Honeywell Quantum Solutions, an investor and commercial partner with Cambridge Quantum since 2019, and Cambridge Quantum have combined, forming a new company that is extremely well-positioned to lead the quantum computing industry by offering both hardware and software solutions.

  • Cambridge Quantum, a global leader in quantum software and algorithms, today announced they have entered into a definitive agreement under which Cambridge Quantum will combine with Honeywell Quantum Solutions (HQS), a Honeywell business unit and maker of the highest performing quantum computer currently available. Honeywell has been an investor in and commercial partner with Cambridge Quantum since 2019.
  • The combination will form a new company that is extremely well-positioned to lead the quantum computing industry by offering advanced, fully integrated hardware and software solutions at an unprecedented pace, scale and level of performance to large high-growth markets worldwide.
  • The new company’s combined expertise will deliver solutions to customers globally as well as spur advances that will accelerate the adoption and impact of quantum technology worldwide.

“Joining together into an exciting newly combined enterprise, HQS and CQ will become a global powerhouse that will create and commercialize quantum solutions that address some of humanity’s greatest challenges, while driving the development of what will become a $1 trillion industry,” said Ilyas Khan, founder of CQ. “I am excited to lead a company that has the best people and technologies in the quantum computing industry and the best and boldest clients. Together we will lead the industry as it grows and matures, and create tangible, credible, provable and science-led advances.”

Honeywell’s Chairman and CEO Darius Adamczyk noted, “The new company will have the best talent in the industry, the world’s highest performing quantum computer, the first and most advanced quantum operating system, and comprehensive, hardware- agnostic software that will drive the future of the quantum computing industry. The new company will be extremely well positioned to create value in the near-term within the quantum computing industry by offering the critical global infrastructure needed to support the sector’s explosive growth.”

Adamczyk added, “Since we first announced Honeywell’s quantum business in 2018, we have heard from many investors who have been eager to invest directly in our leading technologies at the forefront of this exciting and dynamic industry – now, they will be able to do so. The new company will provide the best avenue for us to onboard new, diverse sources of capital at scale that will help drive rapid growth.”

“Since we first announced Honeywell’s quantum business in 2018, we have heard from many investors who have been eager to invest directly in our leading technologies at the forefront of this exciting and dynamic industry – now, they will be able to do so. The new company will provide the best avenue for us to onboard new, diverse sources of capital at scale that will help drive rapid growth.”

Dariuz Adamczyk

Founded in 2014, Cambridge Quantum has assembled the industry’s largest scientific team in quantum algorithms and software to achieve major advances in cybersecurity, finance, drug discovery, materials science, optimization, quantum machine learning, natural language processing and more. Cambridge Quantum will continue its presence and expand its software and algorithm development team in the UK, with offices in Cambridge, London and Oxford, and overseas in the USA (Washington), Germany and Japan. CQ will operate with no change to its globally recognized brand.

Honeywell began its quantum computer development program a decade ago and uses trapped-ion technology that uses charged atoms to hold quantum information. The Honeywell System Model H1 consistently achieves the highest quantum volume – a comprehensive performance measurement used widely by the industry – on a commercial quantum computer.

The new company, which will be formally named in due course, will have a long-term agreement with Honeywell to help manufacture the critical ion traps needed to power the quantum hardware. Honeywell will invest between US$270million to US$300 million in the new company.

 

 

ADDITIONAL DETAILS

Honeywell will be the majority shareholder of the new company, and CQ’s shareholders will own over 45% of the new company. The transaction has been unanimously approved by the Boards of Directors of both Cambridge Quantum and Honeywell. The deal is intended to close in Q3 this calendar year and is subject to the satisfaction of certain regulatory approvals, and other customary closing conditions.

Merrill Lynch International (“BofA Securities”) is acting as exclusive financial advisor to Cambridge Quantum, while Morrison & Foerster LLP is acting as its legal advisor. J.P. Morgan Securities LLC is acting as exclusive financial advisor to Honeywell, while Freshfields Bruckhaus Deringer LLP is acting as its legal advisor.

 

ABOUT HONEYWELL

Honeywell is a Fortune 100 technology company that delivers industry-specific solutions that include aerospace products and services; control technologies for buildings and industry; and performance materials globally. Our technologies help aircraft, buildings, manufacturing plants, supply chains, and workers become more connected to make our world smarter, safer, and more sustainable. For more news and information on Honeywell, please visit www.honeywell.com/newsroom.

Cambridge Quantum Announces Integration of TKET Platform into Strangeworks Ecosystem

Cambridge Quantum and Deutsche Bahn Netz AG Partner

Leveraging Latest Quantum Algorithms to Optimise Train Scheduling

Cambridge Quantum and Deutsche Bahn Netz AG (DB) announce today a partnership to explore how quantum computers can improve the rescheduling of rail traffic as part of DB’s long-term transformative plan, Digitale Schiene Deutschland, to digitise DB’s infrastructure and railway system using next-generation technologies to achieve a higher capacity and optimal utilisation of the rail network.

Combining Cambridge Quantum’s latest combinatorial optimisation algorithm Filtering Variational Quantum Eigensolver (F-VQE), recently shown to outperform leading quantum algorithms, with DB’s operations research expertise, the team re-optimised realistic train timetables after simulated delays and are now identifying areas for continued study. This collaboration evidences how innovations in both quantum algorithms and domain-specific modelling can inform a long-term vision for a faster and greener transportation network.

Ilyas Khan, CEO of Cambridge Quantum, said, “We are very excited to be working with Deutsche Bahn to explore and demonstrate the utility of today’s Noisy Intermediate Scale Quantum (NISQ) processors to solve real-world problems in the transport and logistics sector. Deutsche Bahn’s research and development efforts in this area are of critical importance, and we are confident that over time as quantum computers start to scale, our work with the Deutsche Bahn will lead to a meaningful contribution towards a cleaner and greener future.”

Michael Küpper, lead of Capacity and Traffic Management System at Digitale Schiene Deutschland, said, “The collaboration with Cambridge Quantum is a perfect example of how Deutsche Bahn is working as a partner with industry providers and combining our relative expertise towards a goal neither side can achieve alone. By working with Cambridge Quantum, we have fine-tuned our research and development plans and taken the first steps in defining a future quantum-advantaged train timetabling system. We are excited to continue working with Cambridge Quantum to address some of the key challenges and contribute to the rapidly evolving field of NISQ quantum algorithm research.”

 

ABOUT DEUTSCHE BAHN

As a subsidiary of Deutsche Bahn AG, DB Netz AG is responsible for the rail infrastructure.
DB Netz AG is the service provider for currently 420 railway undertakings (RUs) utilising a route network comprising nearly 33,300 km. The German railway network is the longest in all of Europe. DB Netz AG ensures non-discriminatory access to its infrastructure. The performance of non-DB-Group railways in the network has greatly increased over the years. DB Netz is responsible for the operation of an efficient railway infrastructure (long-distance and conurbation networks, regional networks, train-formation and treatment facilities).

Digitale Schiene Deutschland is a sector initiative of DB AG, the German Federal Ministry of Transport and Digital Infrastructure (BMVI) and further relevant transport associations for the fundamental modernisation and digitalisation of railway infrastructure through the consistent introduction of digital control and safety technology. In addition, Digitale Schiene Deutschland is working on a far-reaching digitalisation of the railway system. For this, a system architecture will detail the tasks of individual components of the railway system, and how they should work together.

 

ABOUT CAMBRIDGE QUANTUM

Founded in 2014 and backed by some of the world’s leading quantum computing companies, Cambridge Quantum is a global leader in quantum software and quantum algorithms, enabling clients to achieve the most out of rapidly evolving quantum computing hardware. Cambridge Quantum has offices in Europe, USA, and Japan. On 8th June 2021, Cambridge Quantum announced a merger with Honeywell Quantum Solutions which is expected to close in Q4 2021. Access the source code for lambeq, TKET, Python bindings and utilities on GitHub.

 

Cambridge Quantum and Total Announce Multi-Year Collaboration

Cambridge Quantum and Deutsche Bahn Netz AG Partner

Leveraging Latest Quantum Algorithms to Optimise Train Scheduling

Cambridge Quantum and Deutsche Bahn Netz AG (DB) announce today a partnership to explore how quantum computers can improve the rescheduling of rail traffic as part of DB’s long-term transformative plan, Digitale Schiene Deutschland, to digitise DB’s infrastructure and railway system using next-generation technologies to achieve a higher capacity and optimal utilisation of the rail network.

Combining Cambridge Quantum’s latest combinatorial optimisation algorithm Filtering Variational Quantum Eigensolver (F-VQE), recently shown to outperform leading quantum algorithms, with DB’s operations research expertise, the team re-optimised realistic train timetables after simulated delays and are now identifying areas for continued study. This collaboration evidences how innovations in both quantum algorithms and domain-specific modelling can inform a long-term vision for a faster and greener transportation network.

Ilyas Khan, CEO of Cambridge Quantum, said, “We are very excited to be working with Deutsche Bahn to explore and demonstrate the utility of today’s Noisy Intermediate Scale Quantum (NISQ) processors to solve real-world problems in the transport and logistics sector. Deutsche Bahn’s research and development efforts in this area are of critical importance, and we are confident that over time as quantum computers start to scale, our work with the Deutsche Bahn will lead to a meaningful contribution towards a cleaner and greener future.”

Michael Küpper, lead of Capacity and Traffic Management System at Digitale Schiene Deutschland, said, “The collaboration with Cambridge Quantum is a perfect example of how Deutsche Bahn is working as a partner with industry providers and combining our relative expertise towards a goal neither side can achieve alone. By working with Cambridge Quantum, we have fine-tuned our research and development plans and taken the first steps in defining a future quantum-advantaged train timetabling system. We are excited to continue working with Cambridge Quantum to address some of the key challenges and contribute to the rapidly evolving field of NISQ quantum algorithm research.”

 

ABOUT DEUTSCHE BAHN

As a subsidiary of Deutsche Bahn AG, DB Netz AG is responsible for the rail infrastructure.
DB Netz AG is the service provider for currently 420 railway undertakings (RUs) utilising a route network comprising nearly 33,300 km. The German railway network is the longest in all of Europe. DB Netz AG ensures non-discriminatory access to its infrastructure. The performance of non-DB-Group railways in the network has greatly increased over the years. DB Netz is responsible for the operation of an efficient railway infrastructure (long-distance and conurbation networks, regional networks, train-formation and treatment facilities).

Digitale Schiene Deutschland is a sector initiative of DB AG, the German Federal Ministry of Transport and Digital Infrastructure (BMVI) and further relevant transport associations for the fundamental modernisation and digitalisation of railway infrastructure through the consistent introduction of digital control and safety technology. In addition, Digitale Schiene Deutschland is working on a far-reaching digitalisation of the railway system. For this, a system architecture will detail the tasks of individual components of the railway system, and how they should work together.

 

ABOUT CAMBRIDGE QUANTUM

Founded in 2014 and backed by some of the world’s leading quantum computing companies, Cambridge Quantum is a global leader in quantum software and quantum algorithms, enabling clients to achieve the most out of rapidly evolving quantum computing hardware. Cambridge Quantum has offices in Europe, USA, and Japan. On 8th June 2021, Cambridge Quantum announced a merger with Honeywell Quantum Solutions which is expected to close in Q4 2021. Access the source code for lambeq, TKET, Python bindings and utilities on GitHub.

 

IBM Invests in Cambridge Quantum

Cambridge Quantum and Deutsche Bahn Netz AG Partner

Leveraging Latest Quantum Algorithms to Optimise Train Scheduling

Cambridge Quantum and Deutsche Bahn Netz AG (DB) announce today a partnership to explore how quantum computers can improve the rescheduling of rail traffic as part of DB’s long-term transformative plan, Digitale Schiene Deutschland, to digitise DB’s infrastructure and railway system using next-generation technologies to achieve a higher capacity and optimal utilisation of the rail network.

Combining Cambridge Quantum’s latest combinatorial optimisation algorithm Filtering Variational Quantum Eigensolver (F-VQE), recently shown to outperform leading quantum algorithms, with DB’s operations research expertise, the team re-optimised realistic train timetables after simulated delays and are now identifying areas for continued study. This collaboration evidences how innovations in both quantum algorithms and domain-specific modelling can inform a long-term vision for a faster and greener transportation network.

Ilyas Khan, CEO of Cambridge Quantum, said, “We are very excited to be working with Deutsche Bahn to explore and demonstrate the utility of today’s Noisy Intermediate Scale Quantum (NISQ) processors to solve real-world problems in the transport and logistics sector. Deutsche Bahn’s research and development efforts in this area are of critical importance, and we are confident that over time as quantum computers start to scale, our work with the Deutsche Bahn will lead to a meaningful contribution towards a cleaner and greener future.”

Michael Küpper, lead of Capacity and Traffic Management System at Digitale Schiene Deutschland, said, “The collaboration with Cambridge Quantum is a perfect example of how Deutsche Bahn is working as a partner with industry providers and combining our relative expertise towards a goal neither side can achieve alone. By working with Cambridge Quantum, we have fine-tuned our research and development plans and taken the first steps in defining a future quantum-advantaged train timetabling system. We are excited to continue working with Cambridge Quantum to address some of the key challenges and contribute to the rapidly evolving field of NISQ quantum algorithm research.”

 

ABOUT DEUTSCHE BAHN

As a subsidiary of Deutsche Bahn AG, DB Netz AG is responsible for the rail infrastructure.
DB Netz AG is the service provider for currently 420 railway undertakings (RUs) utilising a route network comprising nearly 33,300 km. The German railway network is the longest in all of Europe. DB Netz AG ensures non-discriminatory access to its infrastructure. The performance of non-DB-Group railways in the network has greatly increased over the years. DB Netz is responsible for the operation of an efficient railway infrastructure (long-distance and conurbation networks, regional networks, train-formation and treatment facilities).

Digitale Schiene Deutschland is a sector initiative of DB AG, the German Federal Ministry of Transport and Digital Infrastructure (BMVI) and further relevant transport associations for the fundamental modernisation and digitalisation of railway infrastructure through the consistent introduction of digital control and safety technology. In addition, Digitale Schiene Deutschland is working on a far-reaching digitalisation of the railway system. For this, a system architecture will detail the tasks of individual components of the railway system, and how they should work together.

 

ABOUT CAMBRIDGE QUANTUM

Founded in 2014 and backed by some of the world’s leading quantum computing companies, Cambridge Quantum is a global leader in quantum software and quantum algorithms, enabling clients to achieve the most out of rapidly evolving quantum computing hardware. Cambridge Quantum has offices in Europe, USA, and Japan. On 8th June 2021, Cambridge Quantum announced a merger with Honeywell Quantum Solutions which is expected to close in Q4 2021. Access the source code for lambeq, TKET, Python bindings and utilities on GitHub.

 

Cambridge Quantum Appoints Oxford University Professor Bob Coecke as Chief Scientist

Cambridge Quantum and Deutsche Bahn Netz AG Partner

Leveraging Latest Quantum Algorithms to Optimise Train Scheduling

Cambridge Quantum and Deutsche Bahn Netz AG (DB) announce today a partnership to explore how quantum computers can improve the rescheduling of rail traffic as part of DB’s long-term transformative plan, Digitale Schiene Deutschland, to digitise DB’s infrastructure and railway system using next-generation technologies to achieve a higher capacity and optimal utilisation of the rail network.

Combining Cambridge Quantum’s latest combinatorial optimisation algorithm Filtering Variational Quantum Eigensolver (F-VQE), recently shown to outperform leading quantum algorithms, with DB’s operations research expertise, the team re-optimised realistic train timetables after simulated delays and are now identifying areas for continued study. This collaboration evidences how innovations in both quantum algorithms and domain-specific modelling can inform a long-term vision for a faster and greener transportation network.

Ilyas Khan, CEO of Cambridge Quantum, said, “We are very excited to be working with Deutsche Bahn to explore and demonstrate the utility of today’s Noisy Intermediate Scale Quantum (NISQ) processors to solve real-world problems in the transport and logistics sector. Deutsche Bahn’s research and development efforts in this area are of critical importance, and we are confident that over time as quantum computers start to scale, our work with the Deutsche Bahn will lead to a meaningful contribution towards a cleaner and greener future.”

Michael Küpper, lead of Capacity and Traffic Management System at Digitale Schiene Deutschland, said, “The collaboration with Cambridge Quantum is a perfect example of how Deutsche Bahn is working as a partner with industry providers and combining our relative expertise towards a goal neither side can achieve alone. By working with Cambridge Quantum, we have fine-tuned our research and development plans and taken the first steps in defining a future quantum-advantaged train timetabling system. We are excited to continue working with Cambridge Quantum to address some of the key challenges and contribute to the rapidly evolving field of NISQ quantum algorithm research.”

 

ABOUT DEUTSCHE BAHN

As a subsidiary of Deutsche Bahn AG, DB Netz AG is responsible for the rail infrastructure.
DB Netz AG is the service provider for currently 420 railway undertakings (RUs) utilising a route network comprising nearly 33,300 km. The German railway network is the longest in all of Europe. DB Netz AG ensures non-discriminatory access to its infrastructure. The performance of non-DB-Group railways in the network has greatly increased over the years. DB Netz is responsible for the operation of an efficient railway infrastructure (long-distance and conurbation networks, regional networks, train-formation and treatment facilities).

Digitale Schiene Deutschland is a sector initiative of DB AG, the German Federal Ministry of Transport and Digital Infrastructure (BMVI) and further relevant transport associations for the fundamental modernisation and digitalisation of railway infrastructure through the consistent introduction of digital control and safety technology. In addition, Digitale Schiene Deutschland is working on a far-reaching digitalisation of the railway system. For this, a system architecture will detail the tasks of individual components of the railway system, and how they should work together.

 

ABOUT CAMBRIDGE QUANTUM

Founded in 2014 and backed by some of the world’s leading quantum computing companies, Cambridge Quantum is a global leader in quantum software and quantum algorithms, enabling clients to achieve the most out of rapidly evolving quantum computing hardware. Cambridge Quantum has offices in Europe, USA, and Japan. On 8th June 2021, Cambridge Quantum announced a merger with Honeywell Quantum Solutions which is expected to close in Q4 2021. Access the source code for lambeq, TKET, Python bindings and utilities on GitHub.

 

Cambridge Quantum Posts Foundational Scientific Papers on “Meaning Aware” Quantum Natural Language Processing

Cambridge Quantum and Deutsche Bahn Netz AG Partner

Leveraging Latest Quantum Algorithms to Optimise Train Scheduling

Cambridge Quantum and Deutsche Bahn Netz AG (DB) announce today a partnership to explore how quantum computers can improve the rescheduling of rail traffic as part of DB’s long-term transformative plan, Digitale Schiene Deutschland, to digitise DB’s infrastructure and railway system using next-generation technologies to achieve a higher capacity and optimal utilisation of the rail network.

Combining Cambridge Quantum’s latest combinatorial optimisation algorithm Filtering Variational Quantum Eigensolver (F-VQE), recently shown to outperform leading quantum algorithms, with DB’s operations research expertise, the team re-optimised realistic train timetables after simulated delays and are now identifying areas for continued study. This collaboration evidences how innovations in both quantum algorithms and domain-specific modelling can inform a long-term vision for a faster and greener transportation network.

Ilyas Khan, CEO of Cambridge Quantum, said, “We are very excited to be working with Deutsche Bahn to explore and demonstrate the utility of today’s Noisy Intermediate Scale Quantum (NISQ) processors to solve real-world problems in the transport and logistics sector. Deutsche Bahn’s research and development efforts in this area are of critical importance, and we are confident that over time as quantum computers start to scale, our work with the Deutsche Bahn will lead to a meaningful contribution towards a cleaner and greener future.”

Michael Küpper, lead of Capacity and Traffic Management System at Digitale Schiene Deutschland, said, “The collaboration with Cambridge Quantum is a perfect example of how Deutsche Bahn is working as a partner with industry providers and combining our relative expertise towards a goal neither side can achieve alone. By working with Cambridge Quantum, we have fine-tuned our research and development plans and taken the first steps in defining a future quantum-advantaged train timetabling system. We are excited to continue working with Cambridge Quantum to address some of the key challenges and contribute to the rapidly evolving field of NISQ quantum algorithm research.”

 

ABOUT DEUTSCHE BAHN

As a subsidiary of Deutsche Bahn AG, DB Netz AG is responsible for the rail infrastructure.
DB Netz AG is the service provider for currently 420 railway undertakings (RUs) utilising a route network comprising nearly 33,300 km. The German railway network is the longest in all of Europe. DB Netz AG ensures non-discriminatory access to its infrastructure. The performance of non-DB-Group railways in the network has greatly increased over the years. DB Netz is responsible for the operation of an efficient railway infrastructure (long-distance and conurbation networks, regional networks, train-formation and treatment facilities).

Digitale Schiene Deutschland is a sector initiative of DB AG, the German Federal Ministry of Transport and Digital Infrastructure (BMVI) and further relevant transport associations for the fundamental modernisation and digitalisation of railway infrastructure through the consistent introduction of digital control and safety technology. In addition, Digitale Schiene Deutschland is working on a far-reaching digitalisation of the railway system. For this, a system architecture will detail the tasks of individual components of the railway system, and how they should work together.

 

ABOUT CAMBRIDGE QUANTUM

Founded in 2014 and backed by some of the world’s leading quantum computing companies, Cambridge Quantum is a global leader in quantum software and quantum algorithms, enabling clients to achieve the most out of rapidly evolving quantum computing hardware. Cambridge Quantum has offices in Europe, USA, and Japan. On 8th June 2021, Cambridge Quantum announced a merger with Honeywell Quantum Solutions which is expected to close in Q4 2021. Access the source code for lambeq, TKET, Python bindings and utilities on GitHub.

 

Cambridge Quantum and Honeywell Announce New Investment and Strengthened Partnership

Cambridge Quantum and Deutsche Bahn Netz AG Partner

Leveraging Latest Quantum Algorithms to Optimise Train Scheduling

Cambridge Quantum and Deutsche Bahn Netz AG (DB) announce today a partnership to explore how quantum computers can improve the rescheduling of rail traffic as part of DB’s long-term transformative plan, Digitale Schiene Deutschland, to digitise DB’s infrastructure and railway system using next-generation technologies to achieve a higher capacity and optimal utilisation of the rail network.

Combining Cambridge Quantum’s latest combinatorial optimisation algorithm Filtering Variational Quantum Eigensolver (F-VQE), recently shown to outperform leading quantum algorithms, with DB’s operations research expertise, the team re-optimised realistic train timetables after simulated delays and are now identifying areas for continued study. This collaboration evidences how innovations in both quantum algorithms and domain-specific modelling can inform a long-term vision for a faster and greener transportation network.

Ilyas Khan, CEO of Cambridge Quantum, said, “We are very excited to be working with Deutsche Bahn to explore and demonstrate the utility of today’s Noisy Intermediate Scale Quantum (NISQ) processors to solve real-world problems in the transport and logistics sector. Deutsche Bahn’s research and development efforts in this area are of critical importance, and we are confident that over time as quantum computers start to scale, our work with the Deutsche Bahn will lead to a meaningful contribution towards a cleaner and greener future.”

Michael Küpper, lead of Capacity and Traffic Management System at Digitale Schiene Deutschland, said, “The collaboration with Cambridge Quantum is a perfect example of how Deutsche Bahn is working as a partner with industry providers and combining our relative expertise towards a goal neither side can achieve alone. By working with Cambridge Quantum, we have fine-tuned our research and development plans and taken the first steps in defining a future quantum-advantaged train timetabling system. We are excited to continue working with Cambridge Quantum to address some of the key challenges and contribute to the rapidly evolving field of NISQ quantum algorithm research.”

 

ABOUT DEUTSCHE BAHN

As a subsidiary of Deutsche Bahn AG, DB Netz AG is responsible for the rail infrastructure.
DB Netz AG is the service provider for currently 420 railway undertakings (RUs) utilising a route network comprising nearly 33,300 km. The German railway network is the longest in all of Europe. DB Netz AG ensures non-discriminatory access to its infrastructure. The performance of non-DB-Group railways in the network has greatly increased over the years. DB Netz is responsible for the operation of an efficient railway infrastructure (long-distance and conurbation networks, regional networks, train-formation and treatment facilities).

Digitale Schiene Deutschland is a sector initiative of DB AG, the German Federal Ministry of Transport and Digital Infrastructure (BMVI) and further relevant transport associations for the fundamental modernisation and digitalisation of railway infrastructure through the consistent introduction of digital control and safety technology. In addition, Digitale Schiene Deutschland is working on a far-reaching digitalisation of the railway system. For this, a system architecture will detail the tasks of individual components of the railway system, and how they should work together.

 

ABOUT CAMBRIDGE QUANTUM

Founded in 2014 and backed by some of the world’s leading quantum computing companies, Cambridge Quantum is a global leader in quantum software and quantum algorithms, enabling clients to achieve the most out of rapidly evolving quantum computing hardware. Cambridge Quantum has offices in Europe, USA, and Japan. On 8th June 2021, Cambridge Quantum announced a merger with Honeywell Quantum Solutions which is expected to close in Q4 2021. Access the source code for lambeq, TKET, Python bindings and utilities on GitHub.